The main interest of the group is the signal transduction pathway that plant cells use to respond to the growth promoting hormones, brassinosteroids.
Brassinosteroids are ubiquitously distributed throughout the plant kingdom sterol derivatives. Brassinosteroid deficient mutants display dramatic developmental defects including dwarfism, male sterility, delayed flowering, reduced apical dominance, and a light-grown morphology when grown in dark. Like their animal counterparts, brassinosteroids regulate the expression of numerous genes, impact the activity of complex metabolic pathways, contribute to the regulation of cell division and differentiation, and help control overall development. Brassinosteroids regulate photomorphogenesis, etiolation and cell expansion. Brassinosteroids have a broad spectrum of activities that have a positive effect on the quantity and quality of crops and they increase plant resistance to stress and pathogens.
The main objective of the group is to combine genetic, molecular and cell biology tools to study the mechanism of brassinosteroid signalling regulation in plants. One aspect of the research is to understand the subcellular compartmentalization and trafficking of brassinosteroid receptor complexes and their relevance to brassinosteroids physiological responses. We use chemical genomics and proteomics to investigate the subcellular localization, mobility, transport routes and binding interactions of different brassinosteroid signalling components. In addition, we want to position important downstream brassinosteroid signalling regulators such as the Arabidopsis GSK3-like kinases in subcellular compartments important for brassinosteroid receptor activity.
The potential application of brassinosteroids in agriculture is based not only on their ability to increase crop yields, but also on the fact that they increase resistance to different stress conditions, such as high salinity, drought, and fungal and viral infections. Thus, unravelling the regulatory mechanisms of brassinosteroid signalling on the level of signalling components, brassinosteroid target genes, and endomembrane trafficking regulators, or identifying chemicals that modulate any of those components can be used to develop selective strategies for high-yielding plants.
Endocytosis and Signalling
Chemical Genetics
Integration and Specificity of Brassinosteroid Signalling
The aim of the project is to combine genetics, proteomics and molecular cell biology to study the mechanisms of brassinosteroid signalling interaction at the level of BIN2 to eventually answer the question how specificity is achieved in brassinosteroid signalling.